3D printing or additive manufacturing is a process of making three dimensional solid objects from a digital file.
The creation of a 3D printed object is achieved using additive processes. In an additive process an object is created by laying down successive layers of material until the object is created. Each of these layers can be seen as a thinly sliced horizontal cross-section of the eventual object.
3D printing is the opposite of subtractive manufacturing which is cutting out / hollowing out a piece of metal or plastic with for instance a milling machine.
3D printing enables you to produce complex (functional) shapes using less material than traditional manufacturing methods.
How Does 3D Printing Work?
It all starts with the creation of a 3D model in your computer. This digital design is for instance a CAD (Computer Aided Design) file. A 3D model is either created from the ground up with 3D modeling software or based on data generated with a 3D scanner. With a 3D scanner you’re able to create a digital copy of an object.
3D Scanners
Currently, prices of 3D scanners range from expensive industrial grade 3D scanners to $30 DIY scanners anyone can make at home. We’ve created a handy guide to scanning technology right here, rating them by price, speed, precision and software capabilities.
3D Modeling Software
3D modeling software come in many forms. There’s industrial grade software that costs thousands a year per license, but also free open source software, like Blender, for instance. You can find some beginner video tutorials on our Blender tutorials page.
3D modeling software are often made to suit the functions of the user’s industry. This has resulted in the rise of software suited to specific niches. As a result, there are software applications on the market that cater to aerospace or transportation, furniture design or fabrics and fashion among many others.
For this reason, when you are starting out, the amount of choices can be a bit overwhelming, we recommend starting with Tinkercad. Tinkercad is available for free and it works in browsers that support WebGL, for instance Google Chrome. They offer beginner lessons and has a built in option to get your object printed via various 3D print services.
Now that you you have a 3D model, the next step is to prepare it in order to make it 3D printable.
Slicing: From 3D Model to 3D Printer
You will have to slice a 3D model in order to make it 3D printable. Slicing is dividing a 3D model into hundreds or thousands of horizontal layers and is done with slicing software.
Sometimes it’s possible to slice a 3D file within a 3D modeling software or in the 3D printer itself. It is also possible that you are forced to use a certain slicing tool for a certain 3D printer.
When your 3D model is sliced, you are ready to feed it to your 3D printer. This can be done via USB, SD or Wi-Fi. It really depends on what 3D printer brand you work with. When a file is uploaded in a 3D printer, the object is ready to be 3D printed layer by layer.
Learn How to 3D Print – Where to Start?
Getting started with 3D printing means asking yourself what you would like to learn first. Are you interested in the hardware, or do you want to focus on the end result – creating objects? Answering this question could lead you to the decision if whether you should buy a pre-assembled 3D Printer or a DIY 3D Printer kit. Read more in our 3D Printers for Beginners buyers guide.
Which 3D Printer Is Right for You?
Want to buy a 3D printer but you have a tight budget? Starting your journey into 3D printing doesn’t need to be expensive. There are plenty cheap 3D printers under $250.
Besides the examples above, there are a bunch of different elements which will help decide what the best 3D printer is for you. Will it be used in the classroom? Will it be used for small batch production? For more information, please read our buyers guide: the best 3D printers of 2018.
How much does a 3D printer cost?
So what determines the price of a 3D printer?
For starters: parts. When a manufacturer uses high quality parts (motors, frame, electronics), this will affect the price of the end product. When the parts are of high quality it doesn’t automatically mean the prints will turn out great – there are too many other factors that play a role as well.
When a manufacturer decides to go cheap on parts it can market the product for a good price. On the other hand it doesn’t automatically mean that a cheap 3d printer will give you bad print results. But you’ll probably have to put in more time and effort to get to the same level.
IKLAN
Secondly there’s Research & Development. It can take years of groundwork and engineering before the final product is a stable, high quality 3D printer. Manpower can become costly overtime which ofcourse needs to be earned back.
The next element that influences the price of a 3D printer is: assembly. In general it’s cheaper and more efficient to ship just the parts compared to a fully assembled 3D printer. This can be in the form of a DIY kit or a semi-assembled 3D printer. This doesn’t necessarily mean that all DIY kits or semi-assembled 3d printers are cheap. Cause some DIY kits contain such high quality parts that eventhough you have to assemble it yourself it’s still pretty expensive. Additionally some brands that market do-it-yourself kits put a lot of time and effort in making educational tutorials and focus on customer service – which also doesn’t come cheap.
And this brings us to the last point that determines the 3D printer price: customer service & warranty.
There’s a good chance you’ll run into problems when you buy a 3D printer. In case you’ve chosen a 3D printer from an established brand you’ll pay more but you will have the reassurance that there’s always support to back you up. Also, when for instance something breaks during shipping, you’ll be glad you chose a product with warranty.
3D Printing Industry
The worldwide 3D printing industry is expected to grow from $3.07B in revenue in 2013 to $12.8B by 2018, and exceed $21B in worldwide revenue by 2020. As it evolves, 3D printing technology is destined to transform almost every major industry and change the way we live, work, and play in the future.
Source: Wohlers Report 2015
The 3D printing industry encompasses many forms of technologies and materials. When most people think of 3D printing they vizualize a simple desktop 3D printer but that’s just the tip of the iceberg. 3D printing can be divided into metal, fabrics, bio and a whole host of other industries. For this reason, it’s important to see it as a cluster of diverse industries with a myriad of different applications.
In the first half of 2017, Sculpteo’s state of 3D printing reported its uses in industrial sectors as:
Consumer Goods (17%)
Industrial Goods (17%)
High Tech (13%)
Services (9%)
Healthcare sectors (7%)
In the third quarter of 2017, Materialise reported increased revenues for their software, medical and manufacturing divisions. The revenue amounted to a $6 million increase in total when compared to the previous year. This is indicative of those very same increasing applications within the industry as the field grows larger.
3D printing is becoming more and more intertwined with the day-to-day operations of businesses. In terms of outlook, CEOs definitely see 3D printing as a benefit. Most expect a 72% rise in spending for 2018 and 55% expect one in 2017. At this stage, most companies are primarily focusing on research and development and prototyping.
FFF / FDM 3D printers are the most used 3D printers as of 2018 with SLS coming in second. Although, over the years metal printing has been climbing. This is to be expected since there is massive amounts of R and D being put into the metal side of additive manufacturing. Company’s like Google and General Electric have been investing in various technologies over the course of the year, possibly having seen the future potential of metal printing.
Examples & Applications of 3D Printing
Applications include rapid prototyping, architectural scale models & maquettes, 3D printed prosthetics and movie props.
Other examples of 3D printing would include reconstructing fossils in paleontology, replicating ancient artifacts in archaeology, reconstructing bones and body parts in forensic pathology and reconstructing heavily damaged evidence acquired from crime scene investigations.
Education
Educators and students have long been using 3D printers in the classroom. 3D printing enables students to materialize their ideas in a fast and affordable way.
Primary & High Schools
3D printer manufacturers have taken up a more direct role in education. Companies often undertake programs to promote technologies. These programs serve as a cheaper way for schools to make 3D printers available for use in classes.